

9.0 - Fiber Characteristics

(Using Nylon as a basis of 1.0)

Generic Fiber Type	Nylon	Polyester	Polypro- Pylene	HDPE Olefin	Aramid	K-Spec
Bulk Strength ¹	1.0	.9-1.1	.55	2.8	2.7	2.75
Weight	1.0	1.21	.80	.85	1.26	1.01
Working ² Elastic Elongation	1.0	.60	.80	.10	.10	.10
Co-efficient ³ of Friction	.1012	.1215	.1522	.08	.1012	.10
					Chars at	Chars at
Melting Point	460°F	480°F	330°F	297°F	800°F	297°F
Critical ⁴ Temperature	180°F	180°F	180°F	150°F	300°F	180°F
Specific Gravity	1.14	1.38	.91	.97	1.44	1.2
Cold-Flow (Creep)	Negligible	Negligible	Negligible to High	Negligible to High	Negligible	Negligible

¹Bulk Strength is defined as strength per circumference squared.

²Working is defined as rope actually in use under a cycling load.

³Co-efficient of friction is based on reluctance to slip or slide.

⁴Critical temperature is defined as the point at which degradation is caused by temperature alone.

Cold-Flow (Creep) is defined as fiber deformation (elongation) due to molecular slippage under a constant steady static loading situation. Fibers that have this inherent characteristic will display extremely low or negligible creep if minor fluctuations occur in the rate and/or frequency of load levels. In rope form, this would apply to polypropylene, polyethylene, and HDPE Olefin fibers.